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Statistics of the One-Electron Current 
in a One-Dimensional Mesoscopic Ring 
at Arbitrary Magnetic Fields 
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The set of moments and the distribution function of the one-electron current in 
a one-dimensional disordered ring with arbitrary magnetic flux are calculated. 
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1. INTRODUCTION 

The theoret ical  work of ref. 1 together  with recent experimental  results ~'- 3) 
have st irred a s t rong interest in the problem of the persistent current  in a 
mesoscopic metal  ring immersed in a magnet ic  field. This current  has been 
computed  using various approaches .  1411~ Some works 14-7~ considered the 
exper imental  s i tuat ion of a ring of finite thickness such that  the number  of 
transverse channels is much greater  than one. This al lowed the authors  to 
use the methods  of weak- local iza t ion theory. In this case one has also to 
take into account  the e lec t ron-e lec t ron  interaction,  ts~ 

On  the other  hand,  the computa t ion  of the one-electron current  in an 
idealized one-dimensional  d isordered ring is also of interest, at least from 
the theoret ical  poin t  of view. One-d imens iona l  local izat ion effects lead in 
this case to a nontr ivial  current  dependence on the magnet ic  flux (see ref. 9 
and below). In ref. 10 such a calculat ion was performed, but  only in the 
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weak magnetic field case. In ref. 11 the one-electron current averaged over 
an ensemble of rings was derived nonperturbatively using Grassmann 
matrix integration. However, the unexplicit form of the resulting expression 
and the need for tedious computations do not allow one to check the 
validity of some approximations. 

A new path integral approach to the study of one-dimensional 
localization was developed in ref. 9. Along with the multipoint density 
correlatots, this new method allowed one to compute the averaged 
absolute values (1II)  of the one-electron current I in a disordered metal 
ring with arbitrary magnetic flux. 

In the present paper we show that the method introduced in ref. 9 
allows us to reconstruct completely the distribution function ~ ( I )  over an 
ensemble of one-dimensional rings with given magnetic flux ~. Simple 
explicit expressions for the moments (12") of the current I are also 
obtained. 

2. PATH INTEGRAL REPRESENTATION 

Let us recall the main steps of the path-integral approach introduced 
in ref. 9. The Schr6dinger equation 

(I: t -k2)  • = -dx----5 + U(x) - k 2  0 = 0  (2.1) 

maps the two-dimensional space of the initial conditions (r + ikd/(Xo), 
~b'(Xo) - ikqJ(Xo)) to the two-dimensional space of the solutions at the point 
x through the matrix 

T(x, Xo) = eik( . . . . . .  o l a :  3 - ( x ,  Xo) eik( . . . . . .  o) a: (2.2) 

where J-(x,  Xo) obeys the following first-order equation: 

d 
- -~x3-=(i tp(x)s:+(+(x)s-  + r  -- (2.3) 

with 

1 i 
tp(x) = - ~  U(x), ~+(x)=  -I-~-~ U(x)e • (2.4) 

Here s - = a : / 2  and s + =  (a"_+ ia-")/2 are the usual spin operators. It has 
been shown ~2~ (see also ref. 9 for greater detail) that in the limit 

kl >> 1 (2.5) 
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where I is the mean free path, the fields tp(x) and (•  can be considered 
as statistically independent. If the initial potential U(x) is a Gaussian 
random function of x with correlator 

( U(x) U(x') ) = D6(x- x') (2.6) 

then the averaging weight over the fields tp(x) and ~• has the form 

~o(x )~r177  dx[l~o'-(x)+r162 (2.7) 

where l=4k2/D is the localization length. It has been shown ~9' J3-15) that 
the following change of variables in (2.7) 

k p = i p +  2~ + ~ -  

~ -  = (~ - - ip~b - - -  f f  +(ff - ) z  ( 2 . 8 )  

~+ =r247 

brings the operator ~--(x, Xo) in the form of a product of usual matrix 
exponentials: 

3-(x' x~ exp [ is: f" dt p(t) 

{ r [! ]} xexp s- dtO+(t)exp i dt'p(t') (2.9) 
A" 0 X" 0 

This statement can be checked by deriving the evolution equation for the 
operator (2.9) and comparing it with (2.3). The field ~O-(x) is assumed 
to obey the initial condition r  thus providing the equality 
Y(Xo, Xo) = 1. Under a proper regularization, which is required by physical 
considerations (see ref. 9), the Jacobian of the transformation (2.8) is seen 
to be equal to 

r_Lf ,,,,,] J ~ e x p  L 2 _L dt 

The surface of integration in the space of the complex fields ~o, (-+ is 
defined by the equations 

Im ~p=O, ~- =(~+)* (2.11) 
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where the asterisk denotes complex conjugation. This surface can be 
deformed to the standard one 

I m p = 0 ,  6 -  = (6+)  * (2.12) 

if all the quantities to be averaged are written in a form which allows 
analytical continuation from the surface (2.11 ) to the whole complex space 
of field configurations (for more details see refs. 9 and 13). This require- 
ment turns out to be fairly constructive. 

3. CALCULATION OF THE CURRENT M O M E N T S  AND OF 
THE CURRENT DISTRIBUTION FUNCTION 

In an appropriate gauge the wave function of an electron moving in a 
metal ring of size 2L immersed in a magnetic flux qs, measured in units of 
flux quanta, obeys Eq. (2.1). Topology and flux dependence are then 
encoded in the boundary conditions 

(6 ' (L)  +_ ik6(L)) = e 2 " ' ~ ( 6 ' ( - L )  ++_ i k 6 ( -  L)) (3.1) 

The mean value of a funct ionf(I )  of the current I can be defined as follows: 

)=~27rk 2 ) . 10E,, (3.2) 
( f ( I )  \ L ,, 6 (E-E , , ) f ( j , , )  , where j , ,=  - 2= O~ 

Here E = k  z is the electron energy and E,  are the eigenvalues of the 
Hamiltonian (2.1) with boundary conditions (3.1), which can be written in 
terms of the matrix T -  T(L, - L ) :  

det( T -  e 2~ir ) = 0 (3.3) 

The matrix Y = Y'(L, - L )  satisfies the "unitarity" conditions 

t r : J - * a : = J  -~, det Y =  1 (3.4) 

and therefore admits the following parametrization: 

= ( e i~ cosh F e ill sinh F "~ 

~'- \e_ia, sinh F e_i=,cosh F ] (3.5) 

Here ct s, fls, and F are by construction (see ref. 3) slowly varying real func- 
tions of L. Substituting the parametrization (3.5) into (2.2), we obtain from 
(3.3) the equation determining the set of eigenvalues E,,, ~~ 

~(E) -= cosh F cos(as + kL) = cos 2rt~ (3.6) 
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Let us start the computation of ( I2") :  

s i n  2m 2nO \ 
cos 2n~) ) 

IT'(E)I 2 .... , 
(3.7) 

Here (3.3) and (3.6) have been taken into account. The &-function can be 
eliminated in (3.7) using the following consideration: for kL >> 1 the result 
of the average (3.7) does not change when L varies on a a scale much less 
than /. Then (12'') must coincide with its average over an interval AL of 
length L: 

1 f L + d L  k /L ,  1 ( I 2 " ) L = ~ j  L d L / I  "-'\ where -s (3.8) 

We can interchange the order of the two averages; then, using the 
(approximate) constancy of the variables F, as, and p,. on the interval AL, 
we obtain 4 

( I2")  = (Io sin 2n~)2" ( (sinh2F + ~in2 2n~),,,) (3.9) 

where we have set Io = 2k/L. Equation (3.9) can be rewritten in the form 

(1~.,) 2 , f :  (m - 1 ) - - - - ~  (Io sin 2n~) . . . .  dp/~2"-I (e-""('i"h:r+'i"2 2 .~ )  (3.10) 

It is important to notice that sinh2F can be expressed in terms of the 
elements of the matrix f without using any complex conjugation: 

sinh' F =  (1 0) f ' s - f  (10) (3.11 ) 

where t denotes the usual matrix transposition. Thus the above-mentioned 
analytic continuation from the surface (2.11) is possible. Substituting (2.9) 
into (3.10), we obtain 

s i n h a F = ~ k - ( L ) f  dtO+(t) exp - i  dt' p(t') (3.12) 
--L 

The average (3.10) is performed using the weight 

~p ~k +- e - s'(~ (3.13) 

4 Such a procedure, which was proposed in ref. 9, seems to be equivalent to the rings-ensemble 
averaging of ref. 11. See also ref. 16. 

822/76/3-4-21 
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where the action S'(p,~b • is obtained from (2.7) after the substitution 
(2.8), taking into account the Jacobian (2.10), and reads 

S'(P. O• )=I ;2LdX[~ P2 

i L 
+-~I Ldxp 

3 3 ] + O+(O- --~ ipO+O - - ~  (~ +0- )2 

(3.14) 

This action has the form of a (0 + 1)-dimensional Schwinger model and 
the @~b • integration in (3.10) can be performed using the so-called 
"bosonization" method, (17~ representing 

expi3li_Ldx(d/+~_)z]=f I'y-LL 

and 

-q 

& (72 + 2 7 6  + q, - )| 
(3.15) 

exp( _#2 sinh z F) - I_ I dz dz* exp( - Iz l  2) 

We eliminate the pqs+~b - and r/q,+~, - interaction terms through the 
following gauge transformation: 

O• O• 4-~ J'-a dt ( 2 , - i p )  (3.17) 

which has the Jacobian 

[ ;  ] JR oc exp - 1 dt (27 - ip) (3.18) 
- -L  

The g 0  • integration becomes Gaussian and can be easily performed. 
Introducing the variable ~(x) and denoting the x derivative with a dot, we 
have 

i 
4=  - 3 q + ~ p ,  ~(L)=0,  ~ p ~ r / o c  @ p ~  (3.19) 
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and performing the Gaussian ~p integration, we come to the following 
expression for (12m): 

2 (I 2" ) 
n(m - 1 )! (Io sin 2nO)""' I :  d,u ~-"" - l 

• f dz dz* exp(-l~2 sin2 2:'rC'- Iz12).~ exp ( - L )  fr 

x exp {--~ +F/a-  Izl~ exp( [ 

,,n E ( ~ ) } S ; , ' r  - 2" ' - l (m  - 1)! (I~162 exp -- r2,,_ I 

• [exp(-r2)] ( Y~"l(r r)l exp(-2L/t)  I r , ( r  (3.20) 

in terms of usual quantum mechanical matrix elements with Hamiltonian 

~ =  1 d 2 
l d~ 2 e-r (3.21) 

where the ket and bra wave functions are 

T(~) = e-r r~"'(r r) = exp [ -  r ( m -  ~ ) ]  exp ( 
(12 sin 2 2nC~)e-r 

~,7 ) 
(3.22) 

The factor Y in (3.20) is the normalization of the standard Feynman-Kac 
path integral; together with e -Lnt it provides the equality ( 1 ) =  1. Using 
the complete set of eigenfunctions of/q 

f,,(~) =-2 (v sinh 2nv) t/2 K2i,.(le -r 

/~f,,(r = -~  v~L(O, (L  IL.)=,~(v-v') 
(3.23) 

where Ku is the standard notation for the modified Bessel function, we 
obtain, after some .arithmetic, 

( - 1 ) " - ' (  c~ ) "-~ 
(12"> = (Iosin 2717t~) 2m (-m'-....--l"~t d(sinT-2n~) (12(lo sin 2nr -z )  

(3.24) 
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and 

2e--L/2l oc X P  - ( I / 2  L ) .~:2 
r 

(Io sin 2n~) 2 Jo dx (sinh2 x + sin 2 2n~) ~/-' ( 125 = x~ ~ (2L/1)3/z 

[ 2 sin- z~u-, \ ,n" znq, sinh-" x ( sinh2 x sinh4 x '~'"2- l_] 
xlog 1+ .---5- ~---z + 2 .s in 2 2he  -4 s-:-7 7---~j (3.25) 

In order to reconstruct the distribution function ~MI), we use the 
following identity: 

f ,,~0 (12"') ~ M J ) =  1 lim Im . ~MI )d I  1 lim. Im 
~ . - o +  J - - I + i e - n J ~ o  = ( J + i e )  2" 

(3.26) 

It is convenient to compute the sum in (3.26) considering it as the result 
of an analytical continuation in J from the imaginary positive semiaxis. 
Substituting (3.24) into (3.26), we see that for such J the summation gives 
a well-defined translation operator in the variable sin 2 2n~ acting on 
( I2 ( los in2n~) -2 ) .  Performing the analytical continuation to the real 
axis, we obtain 

~ ( I )  = 0 for III >Io  (3.27) 

and 

2e -L/21 (Io sin 2rt~) 2 

~ , d I ) -  x//-~(2L/l)3/2 1113 

+ ~ xe - -  ( U 2 L  1 x 2 

x f~ dx 
.1/~ [sinh 2 x - sinh 2 2(1)] 1/2 

for IIl <Io  (3.28) 

where 

2k 
Io = and 

L \12 - (3.29) 

It can be checked that this distribution function reproduces all the 
moments ( I  2m) as well as the result for (1II)  obtained in ref. 9. 

In the limit I--* 0 we get 

2 ~log (2 II0 sin 2n~l'~ 
~T J (3.30) 
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and 
2 exp [ - (l/2L)(2 - L/ l  ) 2 ] F(3./(2L/I ) + 1/2) 

~e(I),-~ 111 (2L/l)  3/2 F(3 . / (2L/ I )+ 1) (3.31) 

in the proximity of the maximum 2 ~ L/l. In the limit L/I ~ + oo we get for 
the quanti ty 2 the normal distribution 

~ ( I )  d I -  e x p [ - ( I / 2 L ) ( 2 -  L/l)Z] d2 (3.32) 
(2nL/l),/2 

Thus in the thermodynamic limit the fluctuations of 3. are suppressed 
and 3. becomes a nonrandom quantity. This fact is deeply connected with 
an earlier result ~8~ about  the asymptotically normal distribution of the 
logarithm of the static resistivity (see also ref. 12). In both cases we are 
dealing with the response of the system to an external field. In our  case 
sin 2 2n~  can formally assume an arbitrary value and in some sense we are 
considering a nonlinear response. However, we see from (3.32) that in the 
limit L/l--* + co the response becomes effectively linear. 

When I - *  Io, (3.28) gives 

2e -  L/2/ sin 2 2n~  f ~-' xe ~t/2L) .~2 
~ ( I o ) -  x/~(2L/l)3/ ,  - ~ 3o dx sinh x 

It is worth noting that in the limit 2n~--* 0, when l /L<  co is fixed, all the 
moments of the current I tend to zero. This seems natural since in a given 
potential without symmetries ( l /L<  co) and with zero magnetic field all the 
stationary states of the electron in the ring can be described by real wave 
functions. The corresponding quantum mechanical expectation values of 
the current operator  are equal to zero. On  the other hand, if we take 
simultaneously the limit I/L --, co (free motion case), we can obtain a non- 
zero result. 

Let us also note that the formal substitution Io = 1, sin 2 2n~, = 1, and 
12 ~ T in (3.28) gives us the distribution function for the transmission coef- 
ficient T. In the limit L/l--* co this reproduces the known results 1'9"2~ for 
the moments  ( T " ) ,  but our formula is valid for finite values of L/l  as well 
(the only limitation is that the sample length 2L and the localization length 
/ be great in comparison to the wavelength 1/k). 
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